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Abstract—Preliminary investigations into the synthesis of bryostatins using ring-closing metathesis to form the C(16)–C(17) double
bond led to a synthesis of the bryostatin analogue 51; precursors 26 and 52, which possess the geminal dimethyl group at C-18, did
not undergo the required ring-closing metathesis.
� 2006 Elsevier Ltd. All rights reserved.
The bryostatins are marine macrolides with potent anti-
neoplastic activity. They act by modulation of the activ-
ity of protein kinase Cs and, in conjunction with other
chemotherapies, are in clinical trials for the treatment of
cancer.1 Three total syntheses of bryostatins have been
reported to date,2 a novel series of advanced acetal-con-
taining analogues has been prepared,3 and aquaculture
techniques are able to provide 100 g quantities of bryo-
statin 1 (1) per annum for clinical trials. Nevertheless,
there remains a need for better access to bryostatins
and analogues for further biological investigations.
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In the three bryostatin syntheses completed to date, the
macrolide was assembled using a Julia reaction to form
the C(16)–C(17) double bond followed by further elabo-
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ration and macrolactonisation.2 However, the efficiency
of this Julia reaction, which involves deprotonation a to
a quaternary centre, is very substrate dependent,1 and
can result in low yields or in syntheses which lack con-
vergency. It is therefore of interest to develop alternative
strategies for assembly of the bryostatin nucleus.

We have developed synthetic approaches to the
C(1)–C(16) and the C(17)–C(27) fragments of the 20-
deoxybryostatin, bryostatin 11 (2).4,5 We now report
preliminary studies into the assembly of the bryostatin
nucleus using ring-closing metathesis to form the
C(16)–C(17) double bond.6

For a preliminary evaluation of the metathesis strategy
for the preparation of bryostatin 11 (2), the C(1)–
C(16) fragment 12 was prepared via a modification of
our earlier route4 as shown in Scheme 1. Condensation
of the aldehyde 3 and phosphonate 4 using barium
hydroxide as base gave the a,b-unsaturated ketone 5,
which was treated with the pyridine–hydrogen fluoride
complex to give the diol 6. This cyclised regio- and stereo-
selectively when reacted with a catalytic amount of
potassium tert-butoxide in tetrahydrofuran to give the
4-methylenetetrahydropyran 7 as a single diastereoiso-
mer. A Dess–Martin oxidation followed by a Wittig con-
densation then furnished the alkene 8. This, on treatment,
with trimethyl orthoformate in methanol containing a
catalytic amount of pyridinium toluene p-sulfonate, gave
the acetal 9, in which the exo-cyclic allylic alcohol had
also been deprotected. Protection of both the primary
and secondary alcohols as trimethylsilylethoxymethyl
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Scheme 1. Reagents and conditions: (i) Ba(OH)2, THF, H2O, rt; (ii), HFÆpy., rt, 12 min; (iii), tBuOK, THF, rt, 15 min (7, 48% from 4); (iv) (a) Dess–
Martin periodinane; (b) Ph3P

+MeBr�, tBuLi (60% from 7); (v) HC(OMe)3, MeOH, PPTS (58%); (vi) SEMCl, iPr2NEt, CH2Cl2, rt (79%); (vii)
nBu4NF, THF, rt (85%); (viii) Dess–Martin periodinane; (ix) NaClO2, NaH2PO4, 2-methylbut-2-ene, tBuOH.

2224 M. Ball et al. / Tetrahedron Letters 47 (2006) 2223–2227
(SEM) ethers followed by selective cleavage of the tert-
butyldiphenylsilyl ether gave the alcohol 11, which was
oxidised to the acid 12 in two steps. This acid corre-
sponds to the required C(1)–C(16)-fragment of the
bryostatins 1 and 2.

A preparation of the C(17)–C(27) fragment 23 based on
our earlier work,5 is outlined in Scheme 2. Asymmetric
dihydroxylation of methyl (3E)-pent-3-enoate 13 using
AD-mix-b gave the lactone 14.7 Following hydroxyl
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Scheme 2. Reagents and conditions: (i) AD-mix-b, tBuOH, H2O (59%); (ii) S
(iv) TBSCl, imid. (66% from 15); (v) DIBAL-H, THF, �78 �C (87%); (vi) pro
Cl2CHCO2H, PPh3, DIAD, THF; (viii) NaOH, MeOH (70% of 19 based on
(92%); (c) (Bu3Sn)2,

nBuLi, CuBrÆDMS, THF, �50 �C (88%); (d) DIBAL-H
DCM, rt (97%); (x) PdCl2Ædppe, Bu3SnOMe, tol., 25, 120 �C (22, 43%; 24, 3
protection giving the SEM-ether 15, ring opening of
the lactone gave the Weinreb amide 16 which was pro-
tected as its tert-butyldimethylsilyl ether 17 and reduced
to the aldehyde 18. Addition of allenylzinc bromide to
18 was expected5 to proceed with chelation control but
a mixture of epimers 19 and 20 was obtained. However,
these could be separated and, following inversion of the
unwanted epimer 20 via a Mitsunobu reaction and
saponification, the required alcohol 19 was obtained in
an overall yield of 70%.8
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nBuSH, K2CO3 (64%).
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The alcohol 19 was taken through to the vinyl bromide
21 via protection, methoxycarbonylation, stereoselec-
tive addition of a tin cuprate, reduction of the ester, fur-
ther protection and substitution of the vinyl stannane
using N-bromosuccinimide. Palladium(0) catalysed
coupling of the vinylic bromide 21 with the enol acetate
25 then gave a mixture of the required non-conjugated
ketone 22 and the Heck product 24,9 but the ketone
22 could be isolated in a yield of 43% which was suffi-
cient to enable the metathesis to be evaluated. Selective
removal of the SEM group gave the alcohol 23, which
corresponds to the C(17)–C(27) fragment of bryostatin
11 (2).

Esterification of the acid 12 using the alcohol 23 gave the
ester 26, but attempts to form the bryostatin macrocycle
using ring-closing metathesis using the Grubbs 2 cata-
lyst6 were unsuccessful with a complex mixture of pro-
ducts being obtained.
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Scheme 3. Reagents and conditions: (i) I2, PPh3, imid. (89%); (ii)
tBuLi, THF, �78 �C, 15 min; (iii) TESCl, imid., rt, 2 h (99% from 28);
(iv) (a) DDQ, DCM, pH 7 buffer (70%); (b) Dess–Martin periodinane;
(v) Ba(OH)2, THF, rt, 18 h (86% over two steps); (vi) HFÆpy, THF, rt,
15 min (100%); (vii) tBuOK, THF, rt (90%); (viii) HC(OMe)3, PPTS,
MeOH, rt (86%); (ix) SEMCl, iPr2NEt, DMAP (80%); (x) (a)
TBAFÆTHF; (b) Dess–Martin periodinane; (c) NaClO2, NaH2PO4,
2-methylbut-2-ene, tBuOH (94%).
During these attempted metatheses, the double bond
attached to the C(1)–C(16) fragment was lost, but the
more hindered double bond attached to the (C17)–
C(27) fragment remained unchanged. These problems
in accessing a bryostatin directly by ring-closing metathe-
sis of the alkene 26 were disappointing but were not
totally unexpected. Ring-closing metatheses of terminal
alkenes with geminal allylic methyl groups are known
but would appear to be very sensitive to minor struc-
tural modifications.10 In the case of the metathesis pre-
cursor 26, it was not clear whether the geminal
dimethyl group at C(18), the presence of a ketone at
C(19), the presence of chelating groups in the vicinity
of the alkenes involved in the metathesis, for example,
the SEM group, or the flexible open-chain structure of
the C(17)–C(23) fragment, was the major factor respon-
sible for the difficulties in the ring-closing metathesis. It
was therefore decided to study the ring-closing metathe-
sis using simpler systems to attempt to establish the
major factors which might be involved.

The C(1)–C(16) fragment 37 lacking the exocyclic alk-
oxymethylene group was prepared as outlined in Scheme
3. The hydroxy-epoxide 27 prepared by Sharpless epoxi-
dation of the corresponding (E)-alkene7 was converted
into iodide 28, which gave allylic alcohol 29 on treat-
ment with tert-butyllithium. Following protection of
the secondary alcohol as its triethylsilyl (TES) derivative
30, selective removal of the p-methoxybenzyl ether and
oxidation gave aldehyde 31. This was condensed with
keto-phosphonate 4 to give enone 32. After selective
TES deprotection, base-induced cyclisation gave tetra-
hydropyran 34, which was converted to acetal 35 by
treatment with trimethyl orthoformate in acidic metha-
nol. Following protection of the secondary alcohol as
its SEM-ether 36, desilylation and oxidation gave acid
37.

Simpler C(17)–C(27)-fragments with and without the
geminal dimethyl group at C(18) (bryostatin numbering)
were prepared as outlined in Schemes 4 and 5. Thus,
reduction of the epoxide 38, prepared by Sharpless
epoxidation of the corresponding (E)-alkene,7 gave diol
39, which was differentially protected to give the bis-silyl
ether 40. This was taken through to the bc-unsaturated
ketone 41 and acetalisation and desilylation gave a mix-
ture of the inseparable epimeric acetals 42 (Scheme 4).

The second modified C(17)–C(27) fragment 49 was pre-
pared by copper(I) catalysed reaction of epoxide 4311

with allylmagnesium bromide followed by protection
to give the tert-butyldimethylsilyl ether 44 (Scheme 5).
Hydroboration/oxidation followed by a Swern oxida-
tion, a zinc-mediated reaction with 3,3-dimethylallyl
bromide and further oxidation gave the ketone 45. Desil-
ylation and cyclisation then gave enol ether 46,12 which
gave a mixture of the hydroxyacetals 47 on oxidation
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Scheme 5. Reagents and conditions: (i) (a) allylmagnesium bromide,
CuI (83%); (b) TBSCl, imid. (93%); (ii) (a) BH3ÆTHF then H2O2/
NaOH (86%); (b) (COCl)2, DMSO, then Et3N; (c) Me2C@CHCH2Br,
Zn dust (67% over two steps); (d) (COCl)2, DMSO, then Et3N; (iii) (a)
TBAF (85% over two steps); (b) camphor sulfonic acid, benzene, MS
4A (99%); (iv) mCPBA, MeOH; (v) (a) Dess–Martin periodinane (86%
from 46); (b) LiBHEt3 (88%); (vi) (a) NaH, MeI, DMF (87%); (b) Na,
liq. NH3, THF (96%).
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using m-chloroperoxybenzoic acid. Further oxidation
gave the corresponding ketone, which was reduced
stereoselectively using lithium triethylborohydride to
give the alcohol 48. O-Methylation and debenzylation
then gave the primary alcohol 49.

Using dicyclohexycarbodiimide (DCC), esterification of
the acid 37 using the alcohol 42 gave the ester 50 (88%),
as a mixture of diastereoisomers. This on treatment
with the Grubbs 2 catalyst underwent stereoselective
ring-closing metathesis to give the macrolide 51, a
macrocyclic analogue of the bryostatins, in which the
C(16)–C(17) double bond had the (E)-configuration. In
contrast, the ester 52 prepared from the acid 37 and
the alcohol 49, (DCC, 85%) did not undergo ring clos-
ing metathesis with the Grubbs 2, Hoveyda or Schrock
catalysts under a variety of conditions.13 As observed
for the ester 26, complex mixtures of products were
obtained in which the less hindered terminal double
bond attached to the tetrahydropyran seemed to have
been destroyed whilst the more hindered terminal dou-
ble bond with geminal allylic methyl groups was mainly
unchanged. A small amount of a dimeric material was
detected by MS.
These results indicate that the ring-closing metathesis
can be carried out on systems which lack the geminal
dimethyl groups at C(18), for example, the successful
metathesis of 50, although it would appear that ring-
closing metatheses of substrates in which these methyl
groups are present, for example, the dienes 26 and 52,
are more difficult to carry out. Diene 52 has the unnat-
ural configuration at C(20), cf. bryostatin 1 (1), and the
C(17)–C(27) fragment of intermediate 26 lacks the con-
formational constraint of the six-membered cyclic hemi-
acetal present in bryostatins. It may be that these factors
are important in affecting the ring-closing metathesis
and so clearly more work is required to delineate fully
all the factors involved in this system. However, ring-
closing metathesis does provide access to bryostatin
analogues, which may well be biologically active, albeit
lacking the geminal dimethyl groups at C(20). Finally,
this work confirms that advanced intermediates for
bryostatin synthesis are available using the chemistry
described herein, so that different strategies for assembly
of the bryostatin system can now be evaluated.
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